
Sandpiper: Black-box and gray-box resource management
for virtual machinesq

Timothy Wood a,*, Prashant Shenoy a, Arun Venkataramani a, Mazin Yousif b
aUniversity of Massachusetts, Dept. of Computer Science, 140 Governor’s Drive, Amherst, MA 01003, United States
bAvirtec, 1236 E. Grant Road, Tucson, AZ 85719, United States

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Virtualization
Data centers
Migration
Dynamic provisioning

a b s t r a c t

Virtualization can provide significant benefits in data centers by enabling dynamic vir-
tual machine resizing and migration to eliminate hotspots. We present Sandpiper, a sys-
tem that automates the task of monitoring and detecting hotspots, determining a new
mapping of physical to virtual resources, resizing virtual machines to their new alloca-
tions, and initiating any necessary migrations. Sandpiper implements a black-box
approach that is fully OS- and application-agnostic and a gray-box approach that
exploits OS- and application-level statistics. We implement our techniques in Xen
and conduct a detailed evaluation using a mix of CPU, network and memory-intensive
applications. Our results show that Sandpiper is able to resolve single server hotspots
within 20 s and scales well to larger, data center environments. We also show that
the gray-box approach can help Sandpiper make more informed decisions, particularly
in response to memory pressure.

! 2009 Elsevier B.V. All rights reserved.

1. Introduction

Data centers—server farms that run networked applica-
tions—have become popular in a variety of domains such
as web hosting, enterprise systems, and e-commerce sites.
Server resources in a data center are multiplexed across
multiple applications—each server runs one or more appli-
cations and application components may be distributed
across multiple servers. Further, each application sees dy-
namic workload fluctuations caused by incremental
growth, time-of-day effects, and flash crowds [1]. Since
applications need to operate above a certain performance
level specified in terms of a service level agreement (SLA),

effective management of data center resources while
meeting SLAs is a complex task.

One possible approach for reducing management com-
plexity is to employ virtualization. In this approach, applica-
tions run on virtual servers that are constructed using
virtual machines, and one or more virtual servers are
mapped onto each physical server in the system. Virtualiza-
tion of data center resources provides numerous benefits. It
enables application isolation since malicious or greedy
applications can not impact other applications co-located
on the same physical server. It enables server consolidation
and provides better multiplexing of data center resources
across applications. Perhaps the biggest advantage of
employing virtualization is the ability to flexibly remap
physical resources to virtual servers in order to handle
workload dynamics. A workload increase can be handled
by increasing the resources allocated to a virtual server if
idle resources are available on thephysical server, or by sim-
plymigrating the virtual server to a less loaded physical ser-
ver.Migration is transparent to the applications andmodern
virtualizationplatforms support this capability [6,16]. How-

1389-1286/$ - see front matter ! 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.04.014

q A preliminary version of this paper, Black-box and Gray-box Strategies
for Virtual Machine Migration, appeared in NSDI 2007.
* Corresponding author. Tel.: +1 4135454753.

E-mail addresses: twood@cs.umass.edu (T. Wood), shenoy@cs.umas-
s.edu (P. Shenoy), arun@cs.umass.edu (A. Venkataramani), mazin@avir-
tec.net (M. Yousif).

Computer Networks xxx (2009) xxx–xxx

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014
http://dx.doi.org/10.1016/j.comnet.2009.04.014
mailto:twood@cs.umass.edu
mailto:shenoy@cs.umass.edu
mailto:shenoy@cs.umass.edu
mailto:arun@cs.umass.edu
mailto:mazin@avirtec.net
mailto:mazin@avirtec.net
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

ever, detectingworkloadhotspots and initiating amigration
is currently handled manually. Manually-initiated migra-
tion lacks the agility to respond to sudden workload
changes; it is also error-prone since each reshufflemight re-
quire migrations or swaps of multiple virtual servers to
rebalance system load. Migration is further complicated by
the need to consider multiple resources—CPU, network,
and memory—for each application and physical server.

To address this challenge, this paper studies automated
black-box and gray-box strategies for virtual machine pro-
visioning in large data centers. Our techniques automate
the tasks of monitoring system resource usage, hotspot
detection, allocating resources and initiating any necessary
migrations. More importantly, our black-box techniques
can make these decisions by simply observing each virtual
machine from the outside and without any knowledge of
the application resident within each VM. We also present
a gray-box approach that assumes access to a small
amount of OS-level statistics in addition to external obser-
vations to better inform the provisioning algorithm. Since a
black-box approach is more general by virtue of being OS
and application-agnostic, an important aspect of our re-
search is to understand if a black-box approach alone is
sufficient and effective for hotspot detection and mitiga-
tion. We have designed and implemented the Sandpiper
system to support either black-box, gray-box, or combined
techniques. We seek to identify specific limitations of the
black-box approach and understand how a gray-box ap-
proach can address them.

Sandpiper implements a hotspot detection algorithm
that determines when to resize or migrate virtual machines,
and a hotspot mitigation algorithm that determines what
and where to migrate and how many resources to allocate.
The hotspot detection component employs a monitoring
and profiling engine that gathers usage statistics on vari-
ous virtual and physical servers and constructs profiles of
resource usage. These profiles are used in conjunction with
prediction techniques to detect hotspots in the system.
Upon detection, Sandpiper grants additional resources to
the overloaded servers if available. If necessary, Sand-
piper’s migration manager is invoked for further hotspot
mitigation. The migration manager employs provisioning
techniques to determine the resource needs of overloaded
VMs and uses a greedy algorithm to determine a sequence
of moves or swaps to migrate overloaded VMs to under-
loaded servers.

We have implemented our techniques using the Xen
platform [3]. We conduct a detailed experimental evalua-
tion on a testbed of two dozen servers using a mix of
CPU-, network- and memory-intensive applications. Our
results show that Sandpiper can alleviate single server hot-
spots in less than 20 s and more complex multi-server hot-
spots in a few minutes. Our results show that Sandpiper
imposes negligible overheads and that gray-box statistics
enable Sandpiper to make better migration decisions when
alleviating memory hotspots.

The rest of this paper is structured as follows. Section 2
presents some background and Sections 3–6 present our
design of Sandpiper. Section 7 presents our implementa-
tion and evaluation. Finally, Sections 8 and 9 present re-
lated work and our conclusions, respectively.

2. Background and system overview

Historically, approaches to dynamic provisioning have
either focused on dynamic replication, where the number
of servers allocated to an application is varied, or dynamic
slicing, where the fraction of a server allocated to an appli-
cation is varied. With the re-emergence of server virtual-
ization, application migration has become an option for
dynamic provisioning. Since migration is transparent to
applications executing within virtual machines, our work
considers this third approach—resource provisioning via
dynamic migrations in virtualized data centers. We present
Sandpiper,1 a system for automated resource allocation and
migration of virtual servers in a data center to meet applica-
tion SLAs. Sandpiper assumes a large cluster of possibly het-
erogeneous servers. The hardware configuration of each
server—its CPU, network interface, disk and memory charac-
teristics—is assumed to be known to Sandpiper. Each physi-
cal server (also referred to as a physical machine or PM) runs
a virtual machine monitor and one or more virtual machines.
Each virtual server runs an application or an application
component (the terms virtual servers and virtual machine
are used interchangeably). Sandpiper currently uses Xen to
implement such an architecture. Each virtual server is as-
sumed to be allocated a certain slice of the physical server
resources. In the case of CPU, this is achieved by assigning
a subset of the host’s CPUs to each virtual machine, along
with a weight that the underlying Xen CPU scheduler uses
to allocate CPU bandwidth. In case of the network interface,
Xen is yet to implement a similar fair-share scheduler; a
best-effort FIFO scheduler is currently used and Sandpiper
is designed to work with this constraint. In case of memory,
a slice is assigned by allocating a certain amount of RAM to
each resident VM. All storage is assumed to be on a network
file system or a storage area network, thereby eliminating
the need to move disk state during VM migrations [6].

Sandpiper runs a component called the nucleus on each
physical server; the nucleus runs inside a special virtual
server (domain-0 in Xen) and is responsible for gathering
resource usage statistics on that server (see Fig. 1). It em-
ploys a monitoring engine that gathers processor, network
interface and memory swap statistics for each virtual ser-
ver. For gray-box approaches, it implements a daemon
within each virtual server to gather OS-level statistics
and perhaps application logs.

The nuclei periodically relay these statistics to the
Sandpiper control plane. The control plane runs on a distin-
guished node and implements much of the intelligence in
Sandpiper. It comprises three components: a profiling en-
gine, a hotspot detector and amigrationand resizing manager
(see Fig. 1). The profiling engine uses the statistics from the
nuclei to construct resource usage profiles for each virtual
server and aggregate profiles for each physical server. The
hotspot detector continuously monitors these usage pro-
files to detect hotspots—informally, a hotspot is said to
have occurred if the aggregate usage of any resource (pro-
cessor, network or memory) exceeds a threshold or if SLA
violations occur for a ‘‘sustained” period. Thus, the hotspot

1 A migratory bird.

2 T. Wood et al. / Computer Networks xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

detection component determines when to signal the need
for resource adjustments and invokes the resource man-
ager upon hotspot detection, which attempts hotspot mit-
igation via resizing or dynamic migrations. It implements
algorithms that determine how much of a resource to allo-
cate the virtual servers (i.e., determine a new resource allo-
cation to meet the target SLAs), what virtual servers to
migrate from the overloaded servers, and where to move
them. The resource manager assumes that the virtual ma-
chine monitor implements a migration mechanism that is
transparent to applications and uses this mechanism to
automate migration decisions; Sandpiper currently uses
Xen’s migration mechanisms that were presented in [6].

3. Monitoring and profiling in Sandpiper

Sandpiper supports both black- and gray-box monitor-
ing techniques that are combined with profile generation
tools to detect hotspots and predict VM resource
requirements.

3.1. Unobtrusive black-box monitoring

The monitoring engine is responsible for tracking the
processor, network and memory usage of each virtual ser-
ver. It also tracks the total resource usage on each physical
server by aggregating the usages of resident VMs. The
monitoring engine tracks the usage of each resource over
a measurement interval I and reports these statistics to
the control plane at the end of each interval.

In a pure black-box approach, all usages must be in-
ferred solely from external observations and without rely-
ing on OS-level support inside the VM. Fortunately, much
of the required information can be determined directly
from the Xen hypervisor or by monitoring events within
domain-0 of Xen. Domain-0 is a distinguished VM in Xen
that is responsible for I/O processing; domain-0 can host
device drivers and act as a ‘‘driver” domain that processes
I/O requests from other domains [3,9]. As a result, it is pos-
sible to track network and disk I/O activity of various VMs
by observing the driver activity in domain-0 [9]. Similarly,
since CPU scheduling is implemented in the Xen hypervi-
sor, the CPU usage of various VMs can be determined by
tracking scheduling events in the hypervisor [10]. Thus,
black-box monitoring can be implemented in the nucleus
by tracking various domain-0 events and without modify-
ing any virtual server. Next, we discuss CPU, network and
memory monitoring using this approach.

CPU monitoring: By instrumenting the Xen hypervisor,
it is possible to provide domain-0 with access to CPU
scheduling events which indicate when a VM is scheduled
and when it relinquishes the CPU. These events are tracked
to determine the duration for which each virtual machine
is scheduled within each measurement interval I. The
Xen 3 distribution includes a monitoring application called
XenMon [10] that tracks the CPU usages of the resident vir-
tual machines using this approach; for simplicity, the mon-
itoring engine employs a modified version of XenMon to
gather CPU usages of resident VMs over a configurable
measurement interval I. On a multi-cpu system, a VM
may only be granted access to a subset of the total CPUs.
However, the number of CPUs allocated to a virtual ma-
chine can be adjusted dynamically.

It is important to realize that these statistics do not
capture the CPU overhead incurred for processing disk
and network I/O requests; since Xen uses domain-0 to
process disk and network I/O requests on behalf of other
virtual machines, this processing overhead gets charged
to the CPU utilization of domain-0. To properly account
for this request processing ovehead, analogous to proper
accounting of interrupt processing overhead in OS ker-
nels, we must apportion the CPU utilization of domain-0
to other virtual machines. We assume that the monitoring
engine and the nucleus impose negligible overhead and
that all of the CPU usage of domain-0 is primarily due
to requests processed on behalf of other VMs. Since do-
main-0 can also track I/O request events based on the
number of memory page exchanges between domains,
we determine the number of disk and network I/O re-
quests that are processed for each VM. Each VM is then
charged a fraction of domain-0’s usage based on the pro-
portion of the total I/O requests made by that VM. A more
precise approach requiring a modified scheduler was pro-
posed in [9].

Network monitoring: Domain-0 in Xen implements
the network interface driver and all other domains access
the driver via clean device abstractions. Xen uses a virtual
firewall-router (VFR) interface; each domain attaches one
or more virtual interfaces to the VFR [3]. Doing so enables
Xen to multiplex all its virtual interfaces onto the underly-
ing physical network interfaces.

Consequently, the monitoring engine can conveniently
monitor each VM’s network usage in Domain-0. Since each
virtual interface looks like a modern NIC and Xen uses Li-
nux drivers, the monitoring engines can use the Linux /
proc interface (in particular /proc/net/dev) to monitor

...

D
om

-0

Nucleus

Xen VMM

VM
1

Apache

VM
2

Java AppMonitoring
Engine

Migration &
Resizing
Manager

Hotspot
Detector

Profiling
Engine

D
om

-0

VM
n-1

App

VM
n

AppMonitoring
Engine

Sandpiper C
ontrol Plane

PM1 PMi

Nucleus

Xen VMM

Fig. 1. The Sandpiper architecture.

T. Wood et al. / Computer Networks xxx (2009) xxx–xxx 3

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

the number of bytes sent and received on each interface.
These statistics are gathered over interval I and returned
to the control plane.

Memorymonitoring: Black-box monitoring of memory
is challenging since Xen allocates a user-specified amount
of memory to each VM and requires the OS within the VM
to manage that memory; as a result, the memory utiliza-
tion is only known to the OS within each VM. It is possible
to instrument Xen to observe memory accesses within
each VM through the use of shadow page tables, which is
used by Xen’s migration mechanism to determine which
pages are dirtied during migration. However, trapping each
memory access results in a significant application slow-
down and is only enabled during migrations[6]. Thus,
memory usage statistics are not directly available and
must be inferred.

The only behavior that is visible externally is swap
activity. Since swap partitions reside on a network disk, I/
O requests to swap partitions need to be processed by do-
main-0 and can be tracked. By tracking the reads and
writes to each swap partition from domain-0, it is possible
to detect memory pressure within each VM.

Our monitoring engine tracks the number of read and
write requests to swap partitions within each measure-
ment interval I and reports it to the control plane. Since
substantial swapping activity is indicative of memory pres-
sure, our current black-box approach is limited to reactive
decision making and can not be proactive.

3.2. Gray-box monitoring

Black-box monitoring is useful in scenarios where it is
not feasible to ‘‘peek inside” a VM to gather usage statis-
tics. Hosting environments, for instance, run third-party
applications, and in some cases, third-party installed OS
distributions. Amazon’s Elastic Computing Cloud (EC2) ser-
vice, for instance, provides a ‘‘barebone” virtual server
where customers can load their own OS images. While
OS instrumentation is not feasible in such environments,
there are environments such as corporate data centers
where both the hardware infrastructure and the applica-
tions are owned by the same entity. In such scenarios, it
is feasible to gather OS-level statistics as well as applica-
tion logs, which can potentially enhance the quality of
decision making in Sandpiper.

Sandpiper supports gray-box monitoring, when feasi-
ble, using a light-weight monitoring daemon that is in-
stalled inside each virtual server. In Linux, the

monitoring daemon uses the /proc interface to gather
OS-level statistics of CPU, network, and memory usage.
The memory usage monitoring, in particular, enables pro-
active detection and mitigation of memory hotspots. The
monitoring daemon also can process logs of applications
such as web and database servers to derive statistics such
as request rate, request drops and service times. Direct
monitoring of such application-level statistics enables ex-
plicit detection of SLA violations, in contrast to the black-
box approach that uses resource utilizations as a proxy
metric for SLA monitoring.

3.3. Profile generation

The profiling engine receives periodic reports of re-
source usage from each nucleus. It maintains a usage his-
tory for each server, which is then used to compute a
profile for each virtual and physical server. A profile is a
compact description of that server’s resource usage over
a sliding time window W. Three black-box profiles are
maintained per virtual server: CPU utilization, network
bandwidth utilization, and swap rate (i.e., page fault rate).
If gray-box monitoring is permitted, four additional pro-
files are maintained: memory utilization, service time, re-
quest drop rate and incoming request rate. Similar
profiles are also maintained for each physical server, which
indicate the aggregate usage of resident VMs.

Each profile contains a distribution and a time series.
The distribution, also referred to as the distribution profile,
represents the probability distribution of the resource
usage over the window W. To compute a CPU distribution
profile, for instance, a histogram of observed usages over
all intervals I contained within the window W is com-
puted; normalizing this histogram yields the desired prob-
ability distribution (see Fig. 2).

While a distribution profile captures the variations in
the resource usage, it does not capture temporal correla-
tions. For instance, a distribution does not indicate
whether the resource utilization increased or decreased
within the window W. A time-series profile captures these
temporal fluctuations and is simply a list of all reported
observations within the window W. For instance, the CPU
time-series profile is a list ðC1;C2; . . . ;CkÞ of the k reported
utilizations within the window W. Whereas time-series
profiles are used by the hotspot detector to spot increasing
utilization trends, distribution profiles are used by the
migration manager to estimate peak resource require-
ments and provision accordingly.

I

Time

U
sage

Utilization Profile

Probability

 . . . Ct-w-2 Ct-w-1 Ct-w . . . Ct-2 Ct-1 Ct

Time Series Profile

W

W

Fig. 2. Profile generation in Sandpiper

4 T. Wood et al. / Computer Networks xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

4. Hotspot detection

The hotspot detection algorithm is responsible for sig-
naling a need for VM resizing whenever SLA violations
are detected implicitly by the black-box approach or
explicitly by the gray-box approach. Hotspot detection is
performed on a per-physical server basis in the black-box
approach—a hotspot is flagged if the aggregate CPU or net-
work utilizations on the physical server exceed a threshold
or if the total swap activity exceeds a threshold. In
contrast, explicit SLA violations must be detected on a
per-virtual server basis in the gray-box approach—a
hotspot is flagged if the memory utilization of the VM
exceeds a threshold or if the response time or the request
drop rate exceed the SLA-specified values.

To ensure that a small transient spike does not trigger
needless migrations, a hotspot is flagged only if thresholds
or SLAs are exceeded for a sustained time. Given a time-
series profile, a hotspot is flagged if at least k out the n
most recent observations as well as the next predicted
value exceed a threshold. With this constraint, we can filter
out transient spikes and avoid needless migrations. The
values of k and n can be chosen to make hotspot detection
aggressive or conservative. For a given n, small values of k
cause aggressive hotspot detection, while large values of k
imply a need for more sustained threshold violations and
thus a more conservative approach. Similarly, larger values
of n incorporate a longer history, resulting in a more con-
servative approach. In the extreme, n ¼ k ¼ 1 is the most
aggressive approach that flags a hotspot as soon as the
threshold is exceeded. Finally, the threshold itself also
determines how aggressively hotspots are flagged; lower
thresholds imply more aggressive migrations at the ex-
pense of lower server utilizations, while higher thresholds
imply higher utilizations with the risk of potentially higher
SLA violations.

Sandpiper employs time-series prediction techniques to
predict future values [4]. Specifically, Sandpiper relies on
the auto-regressive family of predictors, where the nth or-
der predictor ARðnÞ uses n prior observations in conjunc-
tion with other statistics of the time series to make a
prediction. To illustrate the first-order ARð1Þ predictor,
consider a sequence of observations: u1;u2; . . . ;uk. Given
this time series, we wish to predict the demand in the
ðkþ 1Þth interval. Then the first-order ARð1Þ predictor
makes a prediction using the previous value uk, the mean
of the time series values l, and the parameter /which cap-
tures the variations in the time series [4]. The prediction
ûkþ1 is given by:

ûkþ1 ¼ lþ /ðuk % lÞ: ð1Þ

As new observations arrive from the nuclei, the hot spot
detector updates its predictions and performs the above
checks to flag new hotspots in the system.

5. Resource provisioning

A hotspot indicates a resource deficit on the underlying
physical server to service the collective workloads of resi-
dent VMs. Before the hotspot can be resolved, Sandpiper

must first estimate how much additional resources are
needed by the overloaded VMs to fulfill their SLAs; these
estimates are then used to determine if local resource allo-
cation adjustments or migrations are required to resolve
the hotspot.

5.1. Black-box provisioning

The provisioning component needs to estimate the peak
CPU, network and memory requirement of each over-
loaded VM; doing so ensures that the SLAs are not violated
even in the presence of peak workloads.

Estimating peak CPU and network bandwidth needs: Dis-
tribution profiles are used to estimate the peak CPU and
network bandwidth needs of each VM. The tail of the usage
distribution represents the peak usage over the recent past
and is used as an estimate of future peak needs. This is
achieved by computing a high-percentile (e.g., the 95th
percentile) of the CPU and network bandwidth distribution
as an initial estimate of the peak needs.

Since both the CPU scheduler and the network packet
scheduler in Xen are work-conserving, a VM can use more
than its fair share, provided that other VMs are not using
their full allocations. In case of the CPU, for instance, a
VM can use a share that exceeds the share determined by
its weight, so long as other VMs are using less than their
weighted share. In such instances, the tail of the distribu-
tion will exceed the guaranteed share and provide insights
into the actual peak needs of the application. Hence, a
high-percentile of the distribution is a good first approxi-
mation of the peak needs.

However, if all VMs are using their fair shares, then an
overloaded VM will not be allocated a share that exceeds
its guaranteed allocation, even though its peak needs are
higher than the fair share. In such cases, the observed peak
usage (i.e., the tail of the distribution) will equal its fair
share. In this case, the tail of the distribution will under-
estimate the actual peak need. To correct for this under-
estimate, the provisioning component must scale the ob-
served peak to better estimate the actual peak. Thus,
whenever the CPU or the network interface on the physical
server are close to saturation, the provisioning component
first computes a high-percentile of the observed distribu-
tion and then adds a constant D to scale up this estimate.

Example. Consider two virtual machines that are assigned
CPU weights of 1:1 resulting in a fair share of 50% each.
Assume that VM1 is overloaded and requires 70% of the
CPU to meet its peak needs. If VM2 is underloaded and only
using 20% of the CPU, then the work-conserving Xen
scheduler will allocate 70% to VM1. In this case, the tail of
the observed distribution is a good indicator of VM1’s peak
need. In contrast, if VM2 is using its entire fair share of 50%,
then VM1 will be allocated exactly its fair share. In this
case, the peak observed usage will be 50%, an under-
estimate of the actual peak need. Since Sandpiper can
detect that the CPU is fully utilized, it will estimate the
peak to be 50þ D.

The above example illustrates a fundamental limitation
of the black-box approach—it is not possible to estimate

T. Wood et al. / Computer Networks xxx (2009) xxx–xxx 5

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

the true peak need when the underlying resource is fully
utilized. The scale-up factor D is simply a guess and might
end up over- or under-estimating the true peak.

Estimating peak memory needs: Xen allows an adjustable
amount of physical memory to be assigned to each resident
VM; this allocation represents a hard upper-bound that can
not be exceeded regardless of memory demand and regard-
less of the memory usage in other VMs. Consequently, our
techniques for estimating the peak CPU and network usage
do not apply to memory. The provisioning component uses
observed swap activity to determine if the current memory
allocation of the VM should be increased. If swap activity
exceeds the threshold indicating memory pressure, then
the current allocation is deemed insufficient and is in-
creased by a constant amount Dm. Observe that techniques
such as Geiger and hypervisor level caches that attempt to
infer working set sizes by observing swap activity [11,14]
can be employed to obtain a better estimate of memory
needs; however, our current prototype uses the simpler ap-
proach of increasing the allocation by a fixed amount Dm

whenever memory pressure is observed.

5.2. Gray-box provisioning

Since the gray-box approach has access to application-
level logs, information contained in the logs can be utilized
to estimate the peak resource needs of the application. Un-
like the black-box approach, the peak needs can be esti-
mated even when the resource is fully utilized.

To estimate peak needs, the peak request arrival rate is
first estimated. Since the number of serviced requests as
well as the number of dropped requests are typically
logged, the incoming request rate is the summation of
these two quantities. Given the distribution profile of the
arrival rate, the peak rate is simply a high-percentile of
the distribution. Let kpeak denote the estimated peak arrival
rate for the application.

Estimating peak CPU needs: An application model is nec-
essary to estimate the peak CPU needs. Applications such
as web and database servers can be modeled as G/G/1
queuing systems [24]. The behavior of such a G/G/1 queu-
ing system can be captured using the following queuing
theory result [13]:

kcap P sþ
r2

a þ r2
b

2 & ðd% sÞ

! "%1

; ð2Þ

where d is the mean response time of requests, s is the
mean service time, and kcap is the request arrival rate. r2

a

and r2
b are the variance of inter-arrival time and the vari-

ance of service time, respectively. Note that response time
includes the full queueing delay, while service time only
reflects the time spent actively processing a request.

While the desired response time d is specified by the
SLA, the service time s of requests as well as the variance
of inter-arrival and service times r2

a and r2
b can be deter-

mined from the server logs. By substituting these values
into Eq. 2, a lower bound on request rate kcap that can be
serviced by the virtual server is obtained. Thus, kcap repre-
sents the current capacity of the VM.

To service the estimated peak workload kpeak, the cur-
rent CPU capacity needs to be scaled by the factor kpeak

kcap
. Ob-

serve that this factor will be greater than 1 if the peak
arrival rate exceeds the currently provisioned capacity.
Thus, if the VM is currently assigned a CPU weight w, its
allocated share needs to be scaled up by the factor kpeak

kcap
to

service the peak workload.
Estimating peak network needs: The peak network band-

width usage is simply estimated as the product of the esti-
mated peak arrival rate kpeak and the mean requested file
size b; this is the amount of data transferred over the net-
work to service the peak workload. The mean request size
can be computed from the server logs.

Estimating memory needs: Using OS-level information
about a virtual machine’s memory utilization allows the
gray-box approach to more accurately estimate the
amount of memory required by a virtual machine. The
gray-box approach can proactively adjust memory alloca-
tions when the OS reports that it is low on memory (but
before swapping occurs). This data is also used to safely re-
duce the amount of memory allocated to VMs which are
not using their full allotment, something which is impossi-
ble to do with only black-box information about swapping.

6. Hotspot mitigation

Once a hotspot has been detected, Sandpiper must
determine if the hotspots can be resolved with local re-
source adjustments, or if migrations are required to bal-
ance load between hosts.

6.1. VM resizing

While large changes in resource needs may require
migration between servers, some hot spots can be handled
by adjusting the resource allocation of the overloaded VM.
Sandpiper first attempts to increase the resource allocation
for an overloaded VM by either adding additional CPUs,
network interfaces, or memory depending on which re-
source utilizations exceeded the warning thresholds.

If the profiling engine detects that a VM is experiencing
an increasing usage of CPU, Sandpiper will attempt to allo-
cate an additional virtual CPU to the VM. Xen and other vir-
tualization platforms support dynamic changes in the
number of CPUs a VM has access to by exploiting hot-
swapping code that already exists in many operating sys-
tem kernels. A similar approach can be used to add net-
work interfaces to a VM, although this is not currently
supported by Sandpiper.

In many cases, memory hotspots can also be resolved
through local provisioning adjustments. When a VM has
insufficient memory as detected by either swapping
(black-box) or OS statistics (gray-box), Sandpiper will first
attempt to increase the VM’s memory allocation on its cur-
rent host. Only if there is insufficient spare memory will
the VM be migrated to a different host.

6.2. Load balancing with migration

If there are insufficient spare resources on a host, the
migration manager invokes its hotspot mitigation algo-
rithm to determine which virtual servers to migrate and

6 T. Wood et al. / Computer Networks xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

where in order to dissipate the hotspot. Determining a new
mapping of VMs to physical servers that avoids threshold
violations is NP-hard—the multi-dimensional bin packing
problem can be reduced to this problem, where each phys-
ical server is a bin with dimensions corresponding to its re-
source constraints and each VM is an object that needs to
be packed with size equal to its resource requirements.
Even the problem of determining if a valid packing exists
is NP-hard.

Consequently, our hotspot mitigation algorithm resorts
to a heuristic to determine which overloaded VMs to mi-
grate and where such that migration overhead is minimized.
Reducing the migration overhead (i.e., the amount of data
transferred) is important, since Xen’s live migration mech-
anism works by iteratively copying the memory image of
the VM to the destination while keeping track of which
pages are being dirtied and need to be resent. This requires
Xen to intercept all memory accesses for the migrating do-
main, which significantly impacts the performance of the
application inside the VM. By reducing the amount of data
copied over the network, Sandpiper can minimize the total
migration time, and thus, the performance impact on
applications. Note that network bandwidth available for
application use is also reduced due to the background
copying during migrations; however, on a gigabit LAN, this
impact is small.

Capturing multi-dimensional loads: Once the desired
resource allocations have been determined by either our
black-box or gray-box approach, the problem of finding
servers with sufficient idle resource to house overloaded
VMs is identical for both. The migration manager employs
a greedy heuristic to determine which VMs need to be mi-
grated. The basic idea is to move load from the most over-
loaded servers to the least-overloaded servers, while
attempting to minimize data copying incurred during
migration. Since a VM or a server can be overloaded along
one or more of three dimensions–CPU, network and mem-
ory–we define a new metric that captures the combined
CPU-network-memory load of a virtual and physical ser-
ver. The volume of a physical or virtual server is defined
as the product of its CPU, network and memory loads:

Vol ¼ 1
1% cpu

' 1
1% net

' 1
1%mem

; ð3Þ

where cpu, net and mem are the corresponding utilizations
of that resource normalized by the number of CPUs and
network interfaces allocated to the virtual or physical ser-
ver.2 The higher the utilization of a resource, the greater the
volume; if multiple resources are heavily utilized, the above
product results in a correspondingly higher volume. The vol-
ume captures the degree of (over)load along multiple
dimensions in a unified fashion and can be used by the mit-
igation algorithms to handle all resource hotspots in an
identical manner.

Migration phase: To determine which VMs to migrate,
the algorithm orders physical servers in decreasing order
of their volumes. Within each server, VMs are considered
in decreasing order of their volume-to-size ratio (VSR);
where VSR is defined as Volume/Size; size is the memory
footprint of the VM. By considering VMs in VSR order,
the algorithm attempts to migrate the maximum volume
(i.e., load) per unit byte moved, which has been shown to
minimize migration overhead [21].

The algorithm proceeds by considering the highest VSR
virtual machine from the highest volume server and deter-
mines if it can be housed on the least volume (least loaded)
physical server. The move is feasible only if that server has
sufficient idle CPU, network and memory resources to
meet the desired resource allocation of the candidate VM
as determined by the provisioning component (Section
5). Since we use VSR to represent three resource quantities,
the least loaded server may not necessarily ‘‘fit” best with a
particular VM’s needs. If sufficient resources are not avail-
able, then the algorithm examines the next least loaded
server and so on, until a match is found for the candidate
VM. If no physical server can house the highest VSR VM,
then the algorithm moves on to the next highest VSR VM
and attempts to move it in a similar fashion. The process
repeats until the utilizations of all resources on the physi-
cal server fall below their thresholds.

The algorithm then considers the next most loaded
physical server that is experiencing a hotspot and repeats
the process until there are no physical servers left with a
hotspot. The output of this algorithm is a list of overloaded
VMs and a new destination server for each; the actual
migrations are triggered only after all moves have been
determined.

Swap phase: In cases where there are not sufficient idle
resources on less loaded servers to dissipate a hotspot, the
migration algorithm considers VM swaps as an alternative.
A swap involves exchanging a high VSR virtual machine
from a loaded server with one or more low VSR VMs from
an underloaded server. Such a swap reduces the overall
utilization of the overloaded server, albeit to a lesser extent
than a one-way move of the VM. Our algorithm considers
the highest VSR VM on the highest volume server with a
hotspot; it then considers the lowest volume server and
considers the k lowest VSR VMs such that these VMs col-
lectively free up sufficient resources to house the over-
loaded VM. The swap is considered feasible if the two
physical servers have sufficient resources to house the
other server’s candidate VM(s) without violating utiliza-
tion thresholds. If a swap cannot be found, the next least
loaded server is considered for a possible swap and so
on. The process repeats until sufficient high VSR VMs have
been swapped with less loaded VMs so that the hotspot is
dissipated. Although multi-way swaps involving more
than two servers can also be considered, our algorithm
presently does not implement such complex swaps. The
actual migrations to perform the swaps are triggered only
after a list of all swaps is constructed. Note that a swap
may require a third server with ‘‘scratch” RAM to tempo-
rarily house a VM before it moves to its final destination.
An alternative is to (i) suspend one of the VMs on disk,
(ii) use the freed up RAM to accommodate the other VM,

2 If a resource is fully utilized, its utilization is set to 1% !, rather than
one, to avoid infinite volume servers. Also, since the black-box approach is
oblivious of the precise memory utilization, the value of mem is set to 0.5 in
the absence of swapping and to 1% ! if memory pressure is observed; the
precise value of mem is used in the gray-box approach.

T. Wood et al. / Computer Networks xxx (2009) xxx–xxx 7

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

and (iii) resume the first VM on the other server; doing so
is not transparent to the temporarily suspended VM.

7. Implementation and evaluation

The implementation of Sandpiper is based on Xen. The
Sandpiper control plane is implemented as a daemon that
runs on the control node. It listens for periodic usage re-
ports from the various nuclei, which are used to generate
profiles. The profiling engine currently uses a history of
the past 200 measurements to generate virtual and physi-
cal server profiles. The hotspot detector uses these profiles
to detect hotspots; currently a hotspot is triggered when 3
out of 5 past readings and the next predicted value exceed
a threshold. The default threshold is set to 75%. The migra-
tion manager implements our provisioning and hotspot
mitigation algorithms; it notifies the nuclei of any desired
migrations, which then trigger them. In all, the control
plane consists of less than 750 lines of Python code.

The Sandpiper nucleus is a Python application that ex-
tends the XenMon CPU monitor to also acquire network
and memory statistics for each VM. The monitoring engine
in the nucleus collects and reports measurements once
every 10 s—the default measurement interval. The nucleus
uses Xen’s Python management API to trigger migrations
and adjust resource allocations as directed by the control
plane. While black-box monitoring only requires access
to domain-0 events, gray-box monitoring employs two
additional components: a Linux OS daemon and an Apache
module.

The gray-box linux daemon runs on each VM that per-
mits gray-box monitoring. It currently gathers memory
statistics via the /proc interface—the memory utilization,
the number of free pages and swap usage are reported to
the monitoring engine in each interval. The gray-box
Apache module comprises of a real-time log analyzer and
a dispatcher. The log-analyzer processes log-entries as they
are written to compute statistics such as the service time,
request rate, request drop rate, inter-arrival times, and re-
quest/file sizes. The dispatcher is implemented as a kernel
module based on Linux IP Virtual server (IPVS) ver 1.2.1;
the goal of the kernel module is to accurately estimate
the request arrival rate during overload periods, when a
high fraction of requests may be dropped. Since requests
can be dropped at the TCP layer as well as at the HTTP layer

during overloads, the use of a transport-level dispatcher
such as IPVS is necessary for accurately estimating the
drop (and hence arrival) rates. Ordinarily, the kernel dis-
patcher simply forwards incoming requests to Apache for
processing. In all, the nucleus comprises 650 lines of Py-
thon code.

Our evaluation of Sandpiper is based on a prototype
data center consisting of twenty 2.4Ghz Pentium-4 servers
connected over a gigabit Ethernet. These servers run Linux
2.6 and Xen 3.0.2-3 and are equipped with at least 1 GB of
RAM. Experiments involving multi-core systems run on In-
tel Quad-Core servers with 4 GB of RAM and Xen 3.1. A
cluster of Pentium-3 Linux servers is used to generate
workloads for our experiments. One node in the cluster is
designated to run the Sandpiper control plane, while the
rest host one or more VMs, all of which run the Sandpiper
nucleus in domain- 0. In the following experiments, our
VM s run Apache 2.0.54, PHP 4.3.10, and MySQL 4.0.24.

7.1. VM resizing

While migrations are necessary for large changes in re-
source allocations, it is less expensive if resources can be
adjusted locally without the overhead of migration. This
experiment demonstrates Sandpiper’s ability to detect
increasing CPU requirements and respond by allocating
additional CPU cores to the virtual machine.

Initially, a VM running a CPU intensive web application
is allocated a single CPU core. During the experiment, the
number of clients accessing the web server increases.
Sandpiper responds by increasing the number of virtual
CPUs allocated to the VM. The VM starts on a dual core
host; as the load continues to rise, a migration is required
to move the VM to a host with four available CPUs as
shown in Fig. 3.

Result: Resizing a VM’s resource allocation incurs little
overhead. When additional resources are not available locally,
migrations are required.

7.2. Migration effectiveness

Our next experiment exercises Sandpiper’s hotspot
detection and migration algorithms; we subject a set of
black-box servers to a series of workloads that repeatedly
place the system in overload. Our experiment uses three
physical servers and five VMs with memory allocations

 100

 200

 300

 400

 0 25 50 75 100 125

C
P

U
 U

til
iz

at
io

n

Time Interval

1

2

3
4

Migration

CPUs

Fig. 3. Sandpiper increases the number of virtual CPU cores allocated to a VM. A migration is required to move from a 2 to 4 core PM.

8 T. Wood et al. / Computer Networks xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

as shown in Table 1. All VMs run Apache serving dynamic
PHP web pages. The PHP scripts are designed to be CPU
intensive so that a low client request rate places a large
CPU load on a server without significant network or mem-
ory utilization. We use httperf to inject a workload that
goes through three phases, each of which causes a hotspot
on a different physical machine. The peak request rates for
each phase are shown in Table 1.

Fig. 4 presents a time series of the load placed on each
VM along with the triggered migrations. In the first phase,
a large load is placed on VM1, causing the CPU utilization
on PM1 to exceed the CPU threshold. The system detects
a hotspot at t = 166 s. The migration manager examines
candidates for migration in VSR order. VM1 has the highest
VSR, so it is selected as a candidate. Since PM3 has suffi-
cient spare capacity to house VM1, it is migrated there,
thereby eliminating the hotspot less than 20 s after detec-
tion. This represents the ideal case for our algorithm: if
possible, we try to migrate the most loaded VM from an
overloaded PM to one with sufficient spare capacity.

In the second phase, PM2 becomes overloaded due to
increasing load on VM3. However, the migration manager
is unable to migrate this VM because there is insufficient
capacity on the other PMs. As a result, at t = 362 s, the
VM on PM2 with the second highest VSR VM4, is migrated
to PM1 that now has spare capacity. This demonstrates a
more typical case where none of the underloaded PM s
have sufficient spare capacity to run the overloaded PM’s
highest VSR VM, so instead we migrate less overloaded
VMs that can fit elsewhere.

In the final phase, PM3 becomes overloaded when both
its VMs receive identical large loads. Unlike the previous
two cases where candidate VMs had equal memory foot-
prints, VM5 has half as much RAM as VM1, so it is chosen
for migration.

Result: To eliminate hotspots while minimizing the over-
head of migration, our placement algorithm tries to move
the highest VSR VM to the least loaded PM . This maximizes
the amount of load displaced from the hotspot per megabyte
of data transferred.

7.3. Mixed resource workloads

Sandpiper can consolidate applications that stress
different resources to improve the overall multiplexing of
server resources. Our setup comprises two servers with
two VMs each. Both VMs on the first server are network-
intensive, involving large file transfers, while those on
the second server are CPU-intensive running Apache with
dynamic PHP scripts. All VMs are initially allocated
256 MB of memory. VM2 additionally runs a main-mem-
ory database that stores its tables in memory, causing its
memory usage to grow over time.

Figs. 5a and b shows the resource utilization of each PM
over time. Since PM1 has a network hotspot and PM2 has a
CPU hotspot, Sandpiper swaps a network-intensive VM for
a CPU-intensive VM at t = 130. This results in a lower CPU
and network utilization on both servers. Fig. 5(d) shows
the initial utilizations of each VM; after the swap, the
aggregate CPU and network utilizations on both servers
falls below 50%.

In the latter half, memory pressure increases on VM2

due to its main-memory database application. As shown
in Fig. 5c, Sandpiper responds by increasing the RAM allo-
cation in steps of 32 MB every time swapping is observed;
when no additional RAM is available, the VM is swapped to
the second physical server at t = 430. This is feasible be-
cause two cpu-intensive jobs are swapped, leaving CPU
and network utilization balanced, and the second physical
server has more RAM than the first. Memory allocations

Table 1
Workload in requests/second, memory allocations, and initial placement.

VM Peak 1 Peak 2 Peak 3 RAM (MB) Start PM

1 200 130 130 256 1
2 90 90 90 256 1
3 60 200 60 256 2
4 60 90 90 256 2
5 10 10 130 128 3

 0

 0.5

 1

 0 300 600 900

PM
1

 0

 0.5

 1

 0 300 600 900

C
PU

 U
til

iz
at

io
n

(s
ta

ck
ed

)

PM
2

 0
 0.5

 1

 0 300 600 900

PM
3

Time (sec)

VM5

VM1

VM4

Fig. 4. A series of migrations resolve hotspots. Different shades are used for each migrating VM.

T. Wood et al. / Computer Networks xxx (2009) xxx–xxx 9

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

are reactive since only black-box stats are available. Next
we demonstrate how a gray-box approach can proactively
respond to memory pressure.

Result: Sandpiper can respond to network, CPU, or memory
hotspots and can collocate VMs that stress different resources
to improve overall system utilization.

7.4. Gray v. Black: memory allocation

We compare the effectiveness of the black- and gray-
box approaches in mitigating memory hotspots using the
SPECjbb 2005 benchmark. SPECjbb emulates a three-tier
web application based on J2EE servers. We use SPECjbb
to apply an increasingly intense workload to a single VM.
The workload increases every two minutes, causing a sig-
nificant increase in memory usage. After twenty minutes,
the application reaches its peak intensity, after which the
workload decreases at a similar rate.

The VM is initially assigned 256 MB of RAM, and resides
on a physical machine with 384 MB total RAM. We also run
a second, idle physical server which has 1 GB RAM. We run
the experiment with two separate pairs of servers, Black
and Gray, that correspond to the black- and gray-box ap-
proaches, respectively. The Gray system is configured to
signal a hotspot whenever the amount of free RAM in the
virtual machine falls below 32 MB.

Fig. 6a plots the memory allocation of the VM over time.
Both systems gradually increase the VM’s memory until all
unused RAM is exhausted. Since Black can only respond to
swapping, it lags in responsiveness. At t = 380 s, Gray
determines that there is insufficient RAM for the VM and
migrates it to the second PM with 1 GB RAM; Black initi-
ates the same migration shortly afterward. Both continue

to increase the VM’s memory as the load rises. Throughout
the experiment, Black writes a total of 32 MB to swap,
while Gray only writes 2 MB. Note that a lower memory
hotspot threshold in Gray can prevent swapping alto-
gether, while Black can not eliminate swapping due to its
reactive nature.

During the second phase of the trial, Gray is able to de-
tect the decreasing memory requirements and is able to
safely reduce the VM’s memory allocation. Since the
black-box system can only detect swapping, it cannot
reduce the memory allocation without fear of causing
swapping and worse performance.

Result: A key weakness of the black-box approach is its
inability to infer memory usage. Using this information, the
gray-box system can reduce or eliminate swapping and can
safely decrease a VM’s memory allocation.

7.5. Gray v. Black: Apache performance

Recall from Section 5 that when resources are fully uti-
lized, they hamper the black-box approach from accurately
determining the needs of overloaded VMs. This experiment
demonstrates how a black-box approach may incur extra
migrations to mitigate a hotspot, whereas a gray-box ap-
proach can use application-level knowledge for faster hot-
spot mitigation.

Our experiment employs three physical servers and
four VMs. Initially, VM1 through VM3 reside on PM1,
VM4 resides on PM2, and PM3 is idle. We use httperf to
generate requests for CPU intensive PHP scripts on all
VMs. At t = 80 s, we rapidly increase the request rates on
VM1 and VM2 so that actual CPU requirement for each vir-
tual machine reaches 70%, creating an extreme hotspot on

 0

 0.25

 0.5

 0.75

 1

 0 100 200 300 400 500 600

C
PU

 U
til

iz
at

io
n

Time (sec)

Swap 1

PM1
PM2

 0

 0.25

 0.5

 0.75

 1

 0 100 200 300 400 500 600

N
ET

 U
til

iz
at

io
n

Time (sec)

Swap 1

PM1
PM2

 0

 128

 256

 384

 512

 0 200 400 600
 0

 256

 512

 768

 1024

 1280

 1536

VM
2

R
AM

 (M
B)

Sw
ap

 R
at

e
(K

B/
se

c)

Time (sec)

Swap 2

RAM
Swap

Fig. 5. Swaps and migrations to handle network- and memory-intensive loads. Initially, VM1 and VM2 are on PM1, the rest on PM2. After two swaps, PM1

hosts VM1 and VM4.

10 T. Wood et al. / Computer Networks xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

PM1. The request rates for VM3 and VM4 remain constant,
requiring 33% and 7% CPU respectively. We use an aggres-
sive 6 s measurement interval so that Sandpiper can re-
spond quickly to the increase in workload.

Without accurate estimates of each virtual machine’s
resource requirements, the black-box system falters in its
decision making as indicated in Fig. 7. Since the CPU on
PM1 is saturated, each virtual machine receives an equal
portion of processing time and appears equivalent to Sand-
piper. Sandpiper must select a VM at random, and in the
worst case, tries to eliminate the hotspot by migrating
VM3 to PM3. Since VM1 and VM2 continue to reside on
PM1, the hotspot persists even after the first migration.
Next, the black-box approach assumes that VM2 requires
only 50% of the CPU and migrates it to PM2. Unfortunately,
this results in PM2 becoming overloaded, so a final migra-
tion must be performed to move VM4 to PM3.

We repeat this scenario with the Apache gray-box mod-
ule running inside of each virtual machine. Since the gray-
box monitor can precisely measure the incoming request
rates, Sandpiper can accurately estimate the CPU needs
of VM1 and VM2. By using this information, Sandpiper is
able to efficiently respond to the hotspot by immediately
migrating VM3 to PM2 and VM2 to PM3. Fig. 8 depicts
the improved performance of the gray-box approach. Note
that since Sandpiper requires the hotspot to persist for k
out of n intervals before it acts, it is not until t ¼ 98 s that
either system considers itself overloaded. Once a hotspot is
flagged, the gray-box approach can mitigate it within 40 s
with just two migrations, while the black-box approach
requires 110 s and three migrations to do so. Although
response time increases equally under both systems, the

gray-box approach is able to reduce response times to an
acceptable level 61% faster than the black-box system, pro-
ducing a corresponding reduction in SLA violations.

Result: Application-level statistics enable the gray-box ap-
proach to better infer resource needs and improves the quality
of migration decisions, especially in scenarios where resource
demands exceed server capacity.

7.6. Prototype data center evaluation

Next we conduct an experiment to demonstrate how
Sandpiper performs under realistic data center conditions.
We deployed a prototype data center on a cluster of 16
servers that run a total of 35 VMs. An additional node runs
the control plane and one node is reserved as a scratch
node for swaps. The virtual machines run a mix of data
center applications ranging from Apache and streaming
servers to LAMP servers running Apache, PHP, and MySQL
within a single VM. We run RUBiS on our LAMP servers—
RUBiS is an open-source multi-tier web application that
implements an eBay-like auction web site and includes a
workload generator that emulates users browsing and bid-
ding on items.

Of the 35 deployed VMs, 5 run the RUBiS application, 5
run streaming servers, 5 run Apache serving CPU-intensive
PHP scripts, 2 run main memory database applications, and
the remaining 15 serve a mix of PHP scripts and large
HTML files. We use the provided workload generators for
the RUBiS applications and use httperf to generate requests
for the other servers.

To demonstrate Sandpiper’s ability to handle complex
hotspot scenarios, we orchestrate a workload that causes

 256

 384

 512

 640

 768

 0 500 1000 1500 2000

R
A

M
 A

llo
ca

tio
n

(M
B

)

Time (sec)

Migration

Black
Gray

 0

 200

 400

 600

 800

 0 250 500 750 1000 1250 1500

Sw
ap

 R
at

e
(K

B/
se

c)

Time (sec)

Black
Gray

Fig. 6. The black-box system lags behind the gray-box system in allocating memory. The gray-box approach proactively increases memory and safely
reduces the VM’s memory allocation when demand falls.

100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

100

50

0
PM1 PM2 PM3

VM1 VM2 VM3 VM4

C
P

U
 U

til
iz

at
io

n

Key:

Fig. 7. The black-box system incorrectly guesses resource requirements since CPU usage is saturated, resulting in an increased resolution time. The gray-
box system infers usage requirements and transitions directly from (a) to (d).

T. Wood et al. / Computer Networks xxx (2009) xxx–xxx 11

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

multiple network and CPU hotspots on several servers. Our
workloads causes six physical servers running a total of 14
VMs to be overloaded—four servers see a CPU hotspot and
two see a network hotspot. Of the remaining PMs, 4 are
moderately loaded (greater than 45% utilization for at least
one resource) and 6 have lighter loads of between 25% and
40% utilization. We compare Sandpiper to a statically allo-
cated system with no migrations.

Fig. 9 demonstrates that Sandpiper eliminates hotspots
on all six servers by interval 60. These hotspots persist in
the static system until the workload changes or a system
administrator triggers manual migrations. Due to Xen’s
migration overhead, there are brief periods where Sand-
piper causes more physical servers to be overloaded than
in the static case. Despite this artifact, even during periods
where migrations are in progress, Sandpiper reduces the
number of intervals spent in sustained overload by 61%.
In all, Sandpiper performs seven migrations and two swaps
to eliminate all hotspots over a period of 237 s after hot-
spot detection.

Result: Sandpiper is capable of detecting and eliminating
simultaneous hotspots along multiple resource dimensions.
Despite Xen’s migration overhead, the number of servers
experiencing overload is decreased even while migrations
are in progress.

7.7. System overhead and scalability

Sandpiper’s CPU and network overhead is dependent on
the number of PM s and VM s in the data center. With only

black-box VMs, the type of application running in the VM
has no effect on Sandpiper’s overhead. If gray-box modules
are in use, the overhead may vary depending on the size of
application-level statistics gathered.

Nucleus overheads: Sandpiper’s nucleus sends reports
to the Control Plane every measurement interval (10 s by
default). The table in Fig. 10a gives a breakdown of over-
head for each report type. Since each report uses only
288 bytes per VM, the resulting overhead on a gigabit
LAN is negligible. To evaluate the CPU overhead, we com-
pare the performance of a CPU benchmark with and with-
out our resource monitors running. Even on a single
physical server running 24 concurrent VMs, our monitor-
ing overheads only reduce the CPU benchmark perfor-
mance by approximately one percent. This is comparable
to the overheads reported by XenMon, which much of
our code is based on [10].

Control plane scalability: The main source of compu-
tational complexity in the control plane is the computa-
tion of a new mapping of virtual machines to physical
servers after detecting a hotspot. Although the problem
is NP-hard, we only require an approximate solution,
and our heuristics make the problem tractable for reason-
able system sizes. For data centers with up to 500 virtual
servers, the algorithm completes in less than 5 s as shown
in Fig. 10b. For very large data centers with thousands of
virtual machines, the computation could be split up across
multiple nodes, or the center’s servers can be broken up
into pools, each controlled independently by its own con-
trol plane.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

N
um

 O
ve

rlo
ad

ed
 P

M
s

Time (interval #)

Static
Sandpiper

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 SandpiperStatic

N
um

be
r o

f I
nt

er
va

ls

Overload
Sustained

Fig. 9. Sandpiper eliminates all hotspots and reduces the number of intervals experiencing sustained overload by 61%.

 0
 50

 100
 150
 200
 250
 300
 350

 0 100 200 300

Av
g

R
es

p.
 T

im
e

(m
s)

Time (sec)

Black
Gray

 0

 10

 20

 30

 0 100 200 300

M
ig

ra
tio

n
IO

 (M
B/

se
c)

Time (sec)

Black
Gray

Fig. 8. The gray-box system balances the system more quickly due to more informed decision making. The black-box system must perform migrations
sequentially and incurs an additional migration.

12 T. Wood et al. / Computer Networks xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

7.8. Stability during overloads

This section demonstrates how Sandpiper ensures sta-
ble system behavior by avoiding ‘‘thrashing” migrations.
First, Sandpiper avoids migrations to physical machines
with rising loads, since this can trigger additional migra-
tions if the load rises beyond the threshold; time-series
predictions are used to determine future load trends when
selecting a physical server. Thus, Fig. 11a shows that when
a migration decision is required at t = 140 s, Sandpiper will
prefer PM2 over PM1 as a target. Even though PM2 has a
higher current load, the 120 s prediction window indicates
a rising load on PM1.

Next, we demonstrate Sandpiper’s behavior in the pres-
ence of increasing number of hotspots. We simulate a data
center with fifty physical servers, each with three virtual
servers. We increase the number of simultaneous hotspots
from 20 to 45; the mean utilizations are set to 85% and 45%
for servers with and without hotspots. Fig. 11b depicts the
mean number of migrations performed to resolve these
hotspots over multiple runs. If fewer than half of the serv-
ers are overloaded, then all hotspots can typically be re-
solved with one migration per overloaded server. After
this threshold, swaps are required and it is increasingly dif-
ficult to fully resolve overload until it becomes infeasible.
With 35 overloaded servers, Sandpiper was able to elimi-
nate all hotspots 73% of the time (over multiple runs); with

40 overloaded servers, a complete solution was found only
3% of the time. In the extreme case, Sandpiper is still able
to resolve 22 of the 45 hotspots before giving up. In all
cases, Sandpiper first finds a solution before initiating
migrations or swaps; when no feasible solutions are found,
Sandpiper either implements a partial solution or gives up
entirely rather than attempting wasteful migrations. This
bounds the number of migrations which will ever be per-
formed and explains the decrease in migrations beyond
40 overloaded servers, where there is no feasible solution.

7.9. Tuning Sandpiper

Sandpiper has several parameters which the system
administrator can tune to make hotspot detection and mit-
igation more or less aggressive. Our experiments suggest
the following rules of thumb.

Setting thresholds: If overload thresholds are set too
high, then the additional overhead during migration can
cause additional SLA violations. Our experiments show
that the average throughput of a CPU-intensive Apache
server can drop by more than 50% during a migration.
We suggest a CPU threshold of 75% to absorb the CPU over-
head of migration while maximizing server utilization. We
also suggest a 75% threshold for network utilization based
on experiments in [6] which indicate that the network
throughput of a highly loaded server can drop by about

 0

 5

 10

 15

 20

 25

 30

 35

 0 250 500 750 1000 1250 1500

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Number of VMs

Fig. 10. Sandpiper overhead and scalability.

 0.4

 0 50 100 150 200 250

C
PU

 U
til

iz
at

io
n

Time (sec)

PM1
PM2 0

 10

 20

 30

 40

 50

 60

 20 25 30 35 40 45

M
ig

ra
tio

ns

Overloaded PMs (out of 50)

Swaps
Migrations

Fig. 11. (a) Using time-series predictions (the dotted lines) allows Sandpiper to better select migration destinations, improving stability. (b) Higher levels of
overload requires more migrations until there is no feasible solution.

T. Wood et al. / Computer Networks xxx (2009) xxx–xxx 13

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

20% during portions of a migration (due to network copy-
ing overheads).

Sustained overload requirement: Our experiments
(not reported here) reveal that Sandpiper is not sensitive
to a particular choice of the measurement interval I so
long as it is between a few seconds and a few tens of sec-
onds. For a measurement interval of 10 s, we suggest k ¼ 3
and n ¼ 5 for the ‘‘k out of n” check; this corresponds to
requiring the time period of about 3 migrations to exceed
the resource threshold before we initiate a migration. The
D parameter is used in the black-box system to increase re-
source allocations when utilization is saturated. This
should be set equal to the maximum increase in resource
requirements that a service is likely to see during a mea-
surement interval and may vary based on workload; we
use 10% in our experiments. Using more advanced time
series forecasting techniques would allow Sandpiper to
dynamically determine D.

8. Related work

Our work draws upon recent advances in virtual ma-
chines and dynamic provisioning in data centers to address
a question of increasing research and commercial interest:
can virtual machine migration enable robust and highly
responsive provisioning in data centers? The Xen migra-
tion work [6] alludes to this motivation. What is missing
is a convincing validation and algorithms to effect migra-
tion, which is the focus of this paper.

The idea of process migration was first investigated in
the 80s [23]. Support for migrating groups of processes
across OSes was presented in [17], but applications had
to be suspended and it did not address the problem of
maintaining open network connections. Virtualization sup-
port for commodity operating systems in [7] led towards
techniques for virtual machine migration over long time
spans, suitable for WAN migration [20]. More recently,
Xen [6] and VMWare [16] have implemented ‘‘live” migra-
tion of VMs that involve extremely short downtimes rang-
ing from tens of milliseconds to a second. VM migration
has been used for dynamic resource allocation in Grid envi-
ronments [19,22,8]. A system employing automated VM
migrations for scientific nano-technology workloads on
federated grid environments was investigated in [19].
The Shirako system provides infrastructure for leasing re-
sources within a federated cluster environment and was
extended to use virtual machines for more flexible re-
source allocation in [8]. Shirako uses migrations to enable
dynamic placement decisions in response to resource bro-
ker and cluster provider policies. In contrast, we focus on
data center environments with stringent SLA requirements
that necessitate highly responsive migration algorithms for
online load balancing. VMware’s Distributed Resource
Scheduler [25] uses migration to perform automated load
balancing in response to CPU and memory pressure. DRS
uses a userspace application to monitor memory usage
similar to Sandpiper’s gray-box monitor, but unlike Sand-
piper, it cannot utilize application logs to respond directly
to potential SLA violations or to improve placement
decisions.

Dedicated hosting is a category of dynamic provisioning
in which each physical machine runs at most one applica-
tion and workload increases are handled by spawning a
new replica of the application on idle servers. Physical ser-
ver granularity provisioning has been investigated in
[1,18]. Techniques for modeling and provisioning multi-
tier Web services by allocating physical machines to each
tier are presented in [24]. Although dedicated hosting pro-
vides complete isolation, the cost is reduced responsive-
ness – without virtualization, moving from one physical
machine to another takes on the order of several minutes
[24] making it unsuitable for handling flash crowds. Our
current implementation does not replicate virtual ma-
chines, implicitly assuming that PMs are sufficiently
provisioned.

Shared hosting is the second variety of dynamic provi-
sioning, and allows a single physical machine to be shared
across multiple services. Various economic and resource
models to allocate shared resources have been presented
in [5]. Mechanisms to partition and share resources across
services include [2,5]. A dynamic provisioning algorithm to
allocate CPU shares to VMs on a single physical machine
(as opposed to a cluster) was presented and evaluated
through simulations in [15]. In comparison to the above
systems, our work assumes a shared hosting platform
and uses VMs to partition CPU, memory, and network re-
sources, but additionally leverages VM migration to meet
SLA objectives.

Estimating the resources needed to meet an applica-
tion’s SLA requires a model that inspects the request arrival
rates for the application and infers its CPU, memory, and
network bandwidth needs. Developing such models is
not the focus of this work and has been addressed by sev-
eral previous efforts such as [12,1].

9. Conclusions

This paper argued that virtualization provides signifi-
cant benefits in data centers by enabling virtual machine
migration to eliminate hotspots. We presented Sandpiper,
a system that automates the task of monitoring and detect-
ing hotspots, determining a new mapping of physical to
virtual resources, and resizing or migrating VM’s to elimi-
nate the hotspots. We discussed a black-box strategy that
is fully OS- and application-agnostic as well as a gray-
box approach that can exploit OS- and application-level
statistics. An evaluation of our Xen-based prototype
showed that VM migration is a viable technique for rapid
hotspot elimination in data center environments. Using so-
lely black-box methods, Sandpiper is capable of eliminat-
ing simultaneous hotspots involving multiple resources.
We found that utilizing gray-box information can improve
the responsiveness of our system, particularly by allowing
for proactive memory allocations and better inferences
about resource requirements.

Acknowledgements

We would like to thank our anonymous reviewers for
their helpful comments. This research was supported by

14 T. Wood et al. / Computer Networks xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

NSF Grants EEC-0313747, CNS-0720271, CNS-0720616,
CNS-0325868 and a gift from Intel.

References

[1] K. Appleby, S. Fakhouri, L. Fong, M. Goldszmidt, S. Krishnakumar, D.
Pazel, J. Pershing, B. Rochwerger, Oceano-sla-based management of a
computing utility, in: Proceedings of the IFIP/IEEE Symposium on
Integrated Network Management, May 2001.

[2] M. Aron, P. Druschel, W. Zwaenepoel, Cluster reserves: a mechanism
for resource management in cluster-based network servers, in:
Proceedings of the ACM SIGMETRICS Conference, Santa Clara, CA,
June 2000.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, A. Warfield, Xen and the art of virtualization, in:
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), Bolton Landing, NY, October 2003, pp. 164–177.

[4] G.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis Forecasting
and Control, third ed., Prentice Hall, 1994.

[5] J. Chase, D. Anderson, P. Thakar, A. Vahdat, R. Doyle, Managing
energy and server resources in hosting centers, in: Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP),
October 2001, pp. 103–116.

[6] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, A.
Warfiel, Live migration of virtual machines, in: Proceedings of
Usenix Symposium on Network Systems Design and Implementation
(NSDI), May 2005.

[7] K. Govil, D. Teodosiu, Y. Huang, M. Rosenblum, Cellular disco:
resource management using virtual clusters on shared-memory
multiprocessors, in: Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP’99), Kiawah Island Resort, SC,
December 1999, pp. 154–169.

[8] L. Grit, D. Irwin, A. Yumerefendi, J. Chase, Virtual machine hosting for
networked clusters: building the foundations for autonomic
orchestration, in: The First International Workshop on
Virtualization Technology in Distributed Computing (VTDC),
November 2006.

[9] D. Gupta, L. Cherkasova, R. Gardner, A. Vahdat, Enforcing
performance isolation across virtual machines in xen, in:
Proceedings of the ACM/IFIP/USENIX Seventh International
Middleware Conference (Middleware’2006), Melbourne, Australia,
November 2006.

[10] D. Gupta, R. Gardner, L. Cherkasova, Xenmon: Qos monitoring and
performance profiling tool, Tech. Rep. HPL-2005-187, HP Labs, 2005.

[11] S. Jones, A. Arpaci-Dusseau, R. Arpaci-Dusseau, Geiger: monitoring
the buffer cache in a virtual machine environment, in: Proceedings
of the 12th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’00),
Cambridge, MA, October 2006, pp. 13–23.

[12] A. Kamra, V. Misra, E. Nahum, Yaksha: a self-tuning controller for
managing the performance of 3-tiered web sites, in: International
Workshop on Quality of Service (IWQoS), June 2004.

[13] L. Kleinrock, Queueing Systems, Computer Applications, vol. 2, John
Wiley and Sons Inc., 1976.

[14] P. Lu, K. Shen, Virtual machine memory access tracing with
hypervisor exclusive cache, in: Usenix Annual Technical
Conference, June 2007.

[15] D.A. Menasce, M.N. Bennani, Autonomic virtualized environments,
in: IEEE International Conference on Autonomic and Autonomous
Systems, July 2006.

[16] M. Nelson, B.-H. Lim, G. Hutchins, Fast transparent migration for
virtual machines, in: USENIX Annual Technical Conference, 2005.

[17] S. Osman, D. Subhraveti, G. Su, J. Nieh, The design and
implementation of zap: a system for migrating computing
environments, in: Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI), 2002.

[18] S. Ranjan, J. Rolia, H. Fu, E. Knightly, Qos-driven server migration for
internet data centers, in: Proceedings of IWQoS 2002, Miami Beach,
FL, May 2002.

[19] P. Ruth, J. Rhee, D. Xu, R. Kennell, S. Goasguen, Autonomic live
adaptation of virtual computational environments in a multi-
domain infrastructure, in: IEEE International Conference on
Autonomic Computing (ICAC), June 2006.

[20] C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S. Lam, M.
Rosenblum, Optimizing the migration of virtual computers, in:
Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation, December 2002.

[21] V. Sundaram, T. Wood, P. Shenoy, Efficient data migration in self-
managing storage systems, in: Proceedings of the Third IEEE
International Conference on Autonomic Computing (ICAC-06),
Dublin, Ireland, June 2006.

[22] A. Sundararaj, A. Gupta, P. Dinda, Increasing application performance
in virtual environments through run-time inference and adaptation,
in: Fourteenth International Symposium on High Performance
Distributed Computing (HPDC), July 2005.

[23] M. Theimer, K. Lantz, D. Cheriton, Preemptable remote execution
facilities for the v-system, in: Proceedings of the 10th SOSP,
Operating Systems Review, 1985.

[24] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, Dynamic provisioning
for multi-tier internet applications, in: Proceedings of the Second
IEEE International Conference on Autonomic Computing (ICAC-05),
Seattle, WA, June 2005.

[25] Resource Management with VMware DRS, VMware Whitepaper.

Timothy Wood is a computer science Ph.D.
student at the University of Massachusetts
Amherst. He received his B.S. in Electrical and
Computer Engineering from Rutgers Univer-
sity in 2005 and his M.S. in Computer Science
from the University of Massachusetts in 2009.
His research focuses on improving the reli-
ability, performance, and management of
modern data centers, with an emphasis on
exploiting the benefits of virtualization.

Prashant Shenoy received the B.Tech. degree
in Computer Science and Engineering from
the Indian Institute of Technology, Bombay in
1993, and the M.S. and Ph.D. degrees in
Computer Science from the University of
Texas, Austin, in 1994 and 1998, respectively.
He is currently an Associate Professor of
Computer Science at the University of Mas-
sachusetts Amherst. His research interests are
in operating and distributed systems, sensor
networks, Internet systems and pervasive
multimedia. He has been th e recipient of the

National Science Foundation Career Award, the IBM Faculty Development
Award, the Lilly Foundation Teaching Fellowship, the UT Computer Sci-
ence Best Dissertation Award and an IIT Silver Medal. He is a senior
member of the IEEE and the ACM.

Arun Venkataramani has been an assistant
professor at University of Massachusetts
Amherst since 2005 after receiving his Ph.D.
from University of Texas at Austin by way of
University of Washington. His research inter-
ests are in networked and distributed
systems.

T. Wood et al. / Computer Networks xxx (2009) xxx–xxx 15

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

Mazin Yousif is currently the Chief Technol-
ogy Officer for Avirtec, Inc., where he leads
technical and business related issues for the
company. Before that, he held technical
executive positions at Numonyx, Intel and
IBM corporations. He held adjunct and
research professor positions at various uni-
versities including Arizona, the Oregon Grad-
uate Institute (OGI), Duke and North Carolina
State Universities. He finished his M.S. and
Ph.D. degrees from the Pennsylvania State
University in 1987 and 1992, respectively. His

research interests include computer architecture, cloud computing,
autonomic computing, workload profiling/prediction and workload-dri-

ven platform architectures. He has published 55+ articles in his areas of
research. He chaired several conferences and workshops and served in the
program committee of many others. He is an Associate Editor in IEEE ToC,
in the advisory board of the Journal of Pervasive Computing and Com-
munications (JPCC); editor in the Journal of Autonomic and Trusted
Computing (JoATC), and is an editor in Cluster Computing, the Journal of
Networks, Software Tools and Applications. His chairs the Advisory
Committee of ERCIM (The European Research Consortium for Informatics
and Mathematics) and is an IEEE Distinguished Visitor program (2008
10210). He is an IEEE senior member.

16 T. Wood et al. / Computer Networks xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: T. Wood et al., Sandpiper: Black-box and gray-box resource management for virtual machines, Comput.
Netw. (2009), doi:10.1016/j.comnet.2009.04.014

http://dx.doi.org/10.1016/j.comnet.2009.04.014

	Sandpiper: Black-box and gray-box resource management for virtual machines
	Introduction
	Background and system overview
	Monitoring and profiling in Sandpiper
	Unobtrusive black-box monitoring
	Gray-box monitoring
	Profile generation

	Hotspot detection
	Resource provisioning
	Black-box provisioning
	Gray-box provisioning

	Hotspot mitigation
	VM resizing
	Load balancing with migration

	Implementation and evaluation
	VM resizing
	Migration effectiveness
	Mixed resource workloads
	Gray v. Black: memory allocation
	Gray v. Black: Apache performance
	Prototype data center evaluation
	System overhead and scalability
	Stability during overloads
	Tuning Sandpiper

	Related work
	Conclusions
	Acknowledgements
	References

